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Representing structural information of helical charge distributions in cylindrical coordinates
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Structural information in the local electric field produced by helical charge distributions, such as dissolved
DNA, is revealed in a straightforward manner employing cylindrical coordinates. Comparison of structure
factors derived in terms of cylindrical and helical coordinates is made. A simple coordinate transformation
serves to relate the Green function in cylindrical and helical coordinates. We also compare the electric field on
the central axis of a single helix as calculated in both systems.@S1063-651X~97!14303-3#

PACS number~s!: 87.15.2v, 36.20.2r, 41.20.Cv
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A few years ago we developed an exact analytical so
tion for a model of the local electric potential and field ar
ing from the double helix of phosphate groups of a sin
B-DNA molecule immersed in an aqueous solvent@1#. We
subsequently extended our calculation to treat the full~sugar
phosphate plus base pairs! discrete charge distribution of ho
mopolymerB-DNA in a solvent modelled by concentric d
electric cylinders@2#. In both cases we found a characteris
length scale of'5 Å associated with the radial persisten
length of either the helical imprint or individual base-pa
identity. These detailed calculations are based on a theo
cal model ofB-DNA in solution together with Green func
tion techniques to account for the contribution of each in
vidual ~partial! charge to the full net potential. As w
discussed in detail in@1,2#, although the helical configuratio
of point charges does not possess cylindrical symmetry,
individual charges making up the backbone as well as
base pairs can be assigned to a set of concentric cylind
surfaces, and thus cylindrical coordinates provide the m
natural system in which toseparateLaplace’s and Poisson’
equations. The full power of the Green function techniq
can be brought to bear on the problem, which is made n
trivial by the presence of a nonuniform dielectric. Moreov
in cylindrical coordinates one may easily identify and se
rate out the featureless zero-mode contribution to the po
tial. The zero mode, which goes as; ln(r), corresponds to
the cylindrically symmetric potential from a straight line
charge and is what one sees far from the DNA surface.
higher-mode terms in the potential therefore encode and
veal the specific helical conformation of the molecule. T
structural information contained in these higher modes
complete, transparent and calculable@1,2#.

Though the above points have been adequately discu
in @1,2#, we wish to emphasize them in light of a recent cla
that structural information of~double! helix charge distribu-
tions is better represented employing helical rather than
lindrical coordinates@3#. There it was argued that structu
factors derived in a certain helical coordinate system rev
structural information in a more ‘‘transparent’’ fashion. Th
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purpose of the present Brief Report is to demonstrate
similar structural information may be represented just as e
ily in cylindrical coordinates.

STRUCTURE FACTORS

We turn to the derivation of structure factors in cylindr
cal coordinates. In the interests of clarity and brevity,
shall restrict our attention to the case of asingle helix im-
mersed in asingledielectric background medium. In our tw
previous papers we calculated explicitly both the elect
static potential and electric field components due tomany
helices ~to account for the phosphate backbones and b
pairs! immersed in a medium modeled by a triply piecewi
constant dielectric function. However, since the single he
in a uniform background is the only case treated by the me
ods in @3#, we will stick to this simple example to facilitate
comparison.

Before tackling the full helix, we begin by considering th
electrostatic potential for asinglepoint chargeq embedded
in a uniform dielectric mediume, and located at the poin
(a,f8,z8). From@4#, or expression~B26! in the Appendix of
@1#, we have

F~r,f,z!5
4q

pe (
m50

`

8 E
0

`

dkIm~kr,!Km~kr.!

3cos~k@z2z8# !cos~m@f2f8# !, ~1!

whereI m andKm are the modified Bessel functions of inte
ger orderm, and the prime on the sum indicates that the z
mode is to be divided by two. From this we can build up t
electrostatic potential corresponding to a finite or an infin
distribution of ~identical! point charges distributed along
helix of constant radiusa and pitchP. We regard a single
helix of evenly spaced point charges as a two-dimensio
regular lattice wrapped around the cylinderr5a. Instead of
summing the charges along the helix, we decompose
equivalent lattice into a finite collection of one-dimension
vertical line charges that run parallel to thez axis, and then
sum over this ‘‘bundle’’ of one-dimensional chains. Deno
the number of such chains by the integerNo and the number
of charges along any such chain~this can be finite or infinite!
by 2N11. The total number of charges living on the helix
3765 © 1997 The American Physical Society
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3766 55BRIEF REPORTS
therefore equal toNo(2N11). We now make this concep
tual decomposition quantitative: the position in cylindric
coordinates of thenth charge on thesth vertical line with
fixed angular coordinatefs is as follows: (a,fs ,zn,s), where

fs5S 2p

No
D s5S 2pDz

P D s, zn,s5nP1sDz ~2!

for 0<s<No21 and2N<n<N, whereDz is the vertical
rise per residue, andNo5P/Dz is the number of equally
spaced residues per pitch length of the helix~see Fig. 1 of
Ref. @1#!. The single helix potential is obtained simply b
replacing

z8→zn,s and f8→fs

in Eq. ~1!, and summing over the point charges,

FHelix~r,f,z!5 (
n52N

N

(
s50

No21

F~r,f,zua,fs ,zn,s!. ~3!

This leads to the following expression for the electrosta
potential from a single charged helix in a uniform bac
ground:

FHelix~r,f,z!5
2q

pe (
m50

`

8E
0

`

dkG1~k!

3(
6

$C6~m,k!cos~kz6mf!1S6~m,k!

3sin~kz6mf!%I m~kr,!Km~kr.!. ~4!

The momentum-dependent structure factors appearing
are defined as follows:

G1~k!5

sinF ~2N11!
kP

2 G
sinS kP2 D ~ for N finite!

5
2p

P (
j52`

`

dS k2
2p j

P D ~ for N →`! ~5!

and

C6~m,k!5G2
6~m,k!cosF ~No21!S k6

2pm

P DDz/2G ,
~6!

S6~m,k!5G2
6~m,k!sinF ~No21!S k6

2pm

P DDz/2G .
The remaining structure factor appearing in Eq.~6! is defined
by

G2
6~m,k!5

sinF12 ~kP62pm!G
sinF 1

2No
~kP62pm!G . ~7!
l

c

re

The final form in which we have written Eq.~4! results from
working out the double sum in Eq.~3! and using one or more
elementary series and/or trigonometric identities, as wel
the Poisson summation formula, as for example, in Eq.~A3!
of @1#.

By inspection of Eq.~4!, it is clear that structural infor-
mation ~as defined by the appearance of these so-ca
structure factors! of helical charge distributions is revealed
the cylindrical coordinate system. The structure factors
pend explicitly on the pitchP and the rise per chargeDz
which jointly parametrize the geometry of the helix.

Note that ourG1(k) has the same mathematical form
the functionH2(M ) calculated in@3#. The reason for this
coincidence is clear: both structure factors result from p
forming the charge sum~whether finite or not! over~half! the
coordinate linescorresponding to each coordinate syste
That is, we obtainG1 from summing charges along the co
ordinate lineu5const~a line parallel to thez axis!, whereas
H2 results by summing along the coordinate linet5const,
that is, along a helix. The linear momentum in theẑ direction
is k, while that in the helical directiont̂ isM . One has in fact
the formal correspondence between summing over vert
lines and summing over helices,

k↔M , P↔ s̄. ~8!

In the helical coordinate system,H2(M ) is the full struc-
ture factor for a single helix. In cylindrical coordinate
G1(k) gives the structure factor for a line charge, and is n
the complete ‘‘answer,’’ as it were. That is why we need t
additional factors C6(m,k) and S6(m,k), as can be
checked, by summing over theNo vertical chains. In the
cylindrical system, the helical structure is encoded in ter
of the factorized set of structure factorsG1(k)C

6(m,k) and
G1(k)S

6(m,k). The necessity ofC6 and S6 could have
been anticipated on general grounds if one thinks of Fou
analysis on a cylinder, namely, one expands an arbitr
function off andz in terms of the complete set of function
of chiral ‘‘up’’ and ‘‘down’’ moving ‘‘waves’’:
$sin(kz6mf),cos(kz6mf)%. These coefficient functions
(C6,S6) are simply the projections of helical structure alo
the two helical directions, but expressed in cylinder coor
nates. This is why these basis functions appear in
FHelix . We already made use of this fact during an interm
diate stage of our published calculation@see, e.g., Eq.~B8! in
@1##.

We may derive another form for the structure factor
performing the sum over charges in a distinct way. For
ample, if we now sum the point chargesalong the helix, then
an equally transparent factor results—even using cylindr
coordinates. Only a single sum need now be carried out
cause the helix sum means we are to make the replacem

f8→fn5nDf, z8→zn5nDz ~9!

in Eq. ~1! and summing over the helix charges to replace E
~3! such thatm is in the range2M<n<M @not be be con-
fused with the momentum variableM appearing in Eq.~8!#,
to obtain the corresponding single helix potential. The orig
charge corresponds ton50 and has coordinates (a,0,0).
Note that for a finite helix, the net charge must turn out to
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the same no matter how we carry out the sum. This imp
that 2M115No(2N11). By going through identical step
as above, we find that the single helix potential is now r
resented as

FHelix~r,f,z!5
2q

pe (
m50

`

8E
0

`

dk(
6

$G3
6~m,k!

3cos~kz6mf!%I m~kr,!Km~kr.!.

~10!

Here the structure factors turn out to be

G3
6~m,k!5

sin@ 1
2 ~2M11!~kDz6mDf!#

sin@ 1
2 ~kDz6mDf!#

~11!

for finite M ~and hence, finiteN), or

G3
6~m,k!52p (

j52`

`

d~kDz6mDf22p j !, ~12!

for M ~or N) infinite. Again, the basic parametersDz,P
describing the helix geometry are manifest in the cylind
based structure factors. Moreover, the cylinder and he
based structure factorsG3 andH2, are mathematically iden
tical in form. The formal replacement is

Ms̄→kDz6mDf, ~13!

and allows us to obtain one from the other.
The extension to double helices is straightforward. O

merely adds in the potential for the dyadically relat
charges and then sums over thej th backbone chargeqj ,
making up the group:

Fdouble-helix
j ~r,f,z!5Fhelix

j ~r,f1a j ,z1d j !

1Fhelix
j ~r,f2a j ,z2d j !, ~14!

wherea j andd j are the offset angles and distances, resp
tively @1,2#.

RELATION BETWEEN THE HELICAL AND
CYLINDRICAL GREEN FUNCTIONS

From @4#, the cylindrical Green function, that is, the po
tential for a unit (q51) point charge in vacuum (e51), is
given by

1

ux2x8u
5
2

p (
m52`

` E
0

`

dke2 im~f2f8!

3cos@k~z2z8!#I m~kr,!Km~kr.!. ~15!

A similar representation for the left hand side of Eq.~15! was
given in @3#, which involves the same set of basis functio
~essentially products of exponentials and modified Bes
functions!. Thus a coordinate transformation should suffi
to relate these two Green functions. Since we are talk
about thesamefunction, and provided both coordinate re
resentations are correctly worked out, then it must be
case that
s

-

-
-

e

c-

el

g

e

1

ux2x8u U
cylindrical

5
1

ux2x8u U
helical

~16!

to be understood as an equality between one and the s
function expressed in two different coordinate systems.
tending the range in the variablek in the above Green func
tion ~15! by replacingk→uku in the arguments of the Besse
functions, use

E
0

`

dkcos@k~z2z8!#5
1

2E2`

`

dke2 ik~z2z8! ~17!

to rewrite the above Green function~15! ~see also@4#!. Now
make ~or define! the coordinate transformation (f,z)
→(t,s):

z5ssinb2t cosb, f5
s

a
cosb1

t

a
sinb, ~18!

which is just the transformation from cylindrical to helic
coordinates defined in@3#. Hereb is the pitch angle of the
helix, and is related to the helix pitch byP52pa tanb. This
puts

e2 im~f2f8!e2 ik~z2z8![e2 iM ~s2s8!e2 iM 8~ t2t8!, ~19!

provided we identify

M5
m

a
cosb1k sinb, M 85

m

a
sinb2k cosb. ~20!

This identification can itself be inverted to yield

m5a~M 8sinb1M cosb!, k52M 8cosb1M sinb.
~21!

In Eq. ~21!, m is an integer, whilek represents the linea
momentum along thez direction. These are written in term
of M 8 and M , which represent the components of line
momentum along the helicalt ands-directions, respectively
Using Eqs.~17!, ~19!, and ~21!, we can now rewrite the
helical representation for 1/ux2x8u calculated in@3#, and
transform it back in terms of cylindrical variables. That e
pression was given as

1

ux2x8u
5
1

pE2`

`

dMdM8e2 iM ~s2s8!

3e2 iM 8~ t2t8!I l~kr,!Kl~kr.!, ~22!

wherel[a(M 8sinb1M cosb) andk is as above in Eq.~21!.
The first step is to insert the identity

E
2`

`

dmd~m2aM8sinb2aM cosb!51, ~23!

and perform the integration overM 8. This gives a constan
factor (a sinb)21; this step is followed by replacing the inte
gration overm by a discrete sum,*(dm/a)→(m , in accord
with the fact thatm/a is the component of linear momentum
in thef direction of the cylinder. Next the identity
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E
2`

`

dkdS k2
aM2mcosb

a sinb D51 ~24!

allows one to carry out the integration overM . This produces
a factor of sinb which cancels the (sinb)21 from the previous
step. Carrying out these steps together with the relation
Eqs. ~19! and ~20! demonstrates the equivalence~16! be-
tween the two representations calculated for the Green fu
tion.

ELECTRIC FIELD ON THE CENTRAL AXIS

Another point of direct comparison with the results of@3#
is obtained by considering the calculation of the electric fi
on the central axis of the helix. It is not necessary to emp
complicated Green functions in order to calculate the co
ponents of the electric field on the central axis in auniform
medium. The potential for a single point charge located
x85(a,f8,z8) in a uniform dielectric medium is just

F~x!5
q

e

1

ux2x8u

5
q

e

1

~r21a222ar cos~f2f8!1~z2z8!2!1/2
.

~25!

A textbook calculation yields the electric field on the cent
axis:

Er~0,f,z!52
q

e(n,s

a cosS f2
2psDz

P D
„a21~z2nP2sDz!2…3/2

,

Ef~0,f,z!5
q

e(n,s

a sinS f2
2psDz

P D
„a21~z2nP2sDz!2…3/2

, ~26!

Ez~0,f,z!5
q

e(n,s
~z2nP2sDz!

„a21~z2nP2sDz!2…3/2
.

Since these formulas involve the features of the structur
the DNA ~clearly through the two parametersDz and P),
their dependence on the lengths and nature of the D
strands are also obtained here explicitly.

The much lengthier calculations for the electric field co
ponents on the~double!-helix central axis in@3# lead to the
same results only after that calculation is corrected fo
spurious factor of sinb @5#. Indeed, the step invoking th
replacement of integration overM 8 in Eq. ~22! by a sum
. E

. E
in

c-

d
y
-

t

l

of

A

-

a

overl([m) in @3# overlooked this factor of (sinb)21 which
results, as we see, from correct use of identity~23!. Once this
is done, the two sets of electric field components as ca
lated in terms of cylindrical and helical coordinates do agr

Some concluding remarks are in order. First of all, a
most importantly as demonstrated above, not only are cy
drical coordinates adequate for calculating potentials
fields due to helical charge distributions, they also lead
simple structure factors admitting a straightforward physi
interpretation.

In regards to the helical coordinate system advocated
@3#, it is a fact that Laplace’s equation does not separate
helical coordinates. Indeed, it has been known for some t
that there are exactly 11 coordinate systems in which
three-dimensional Laplacian is separable@6#; the helical sys-
tem is not one of them. Nevertheless, the helical Laplacia
@3# was separated assuming ana priori, but not general, form
for the t- ands-dependent factors of the product ansatz. F
this reason, it is important to establish the validity of t
Green function so constructed, and the coordinate trans
mation between cylindrical and helical systems leads,
shown above, to independent confirmation of the correctn
of the helical Green function. At this stage, insofar as o
restricts attention to charged helices in uniform dielect
media, which coordinate system one prefers to employ
simply a matter of taste. However, for the more realistic c
of a nonuniform dielectric or solvent, the cylindrical coord
nate system offers an advantage@1,2#. In this situation the
question of the matching of solutions at the dielectric int
faces arises. Charges within a dielectric induce a surf
charge at the interface between that dielectric and a reg
with a different dielectric constant. Since helical coordina
are nonorthogonal and curvilinear, we expect that match
solutions of Laplace’s or Poisson’s equations across
boundary will lead to a nontrivial albeit solvable problem
differential geometry. We in fact had already considered,
rejected, using helical coordinates, in 1993 for some of
above reasons. Finally, even though helical coordinates
not separable, we can always take the potential and ele
field computed in cylindrical coordinates, and then simp
transform them to helical coordinates to find their corre
forms in these latter coordinates.
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