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Representing structural information of helical charge distributions in cylindrical coordinates
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Structural information in the local electric field produced by helical charge distributions, such as dissolved
DNA, is revealed in a straightforward manner employing cylindrical coordinates. Comparison of structure
factors derived in terms of cylindrical and helical coordinates is made. A simple coordinate transformation
serves to relate the Green function in cylindrical and helical coordinates. We also compare the electric field on
the central axis of a single helix as calculated in both systg&1063-651X97)14303-3

PACS numbd(s): 87.15-v, 36.20-r, 41.20.Cv

A few years ago we developed an exact analytical solupurpose of the present Brief Report is to demonstrate that
tion for a model of the local electric potential and field aris- similar structural information may be represented just as eas-
ing from the double helix of phosphate groups of a singleily in cylindrical coordinates.

B-DNA molecule immersed in an agueous solvEht We

subsequently extended our calculation to treat the(fulyar STRUCTURE FACTORS
phosphate plus base paidiscrete charge distribution of ho- o ) o
mopo|ymerB_DNA in a solvent modelled by concentric di- We turn to the derivation of structure factors in cylindri-

electric cylinderg2]. In both cases we found a characteristic cal coordinates. In the interests of clarity and brevity, we
length scale o5 A associated with the radial persistence shall restrict our attention to the case ofiagle helix im-
length of either the helical imprint or individual base-pair mersed in aingledielectric background medium. In our two
identity. These detailed calculations are based on a theorefirevious papers we calculated explicitly both the electro-
cal model ofB-DNA in solution together with Green func- Static potential and electric field components duentany
tion techniques to account for the contribution of each indi-helices (to account for the phosphate backbones and base
vidual (partia) charge to the full net potential. As we Pairs immersed in a medium modeled by a triply piecewise
discussed in detail ifil,2], although the helical configuration constant dielectric function. However, since the single helix
of point charges does not possess cylindrical symmetry, thé @ uniform background is the only case treated by the meth-
individual charges making up the backbone as well as th@ds in[3], we will stick to this simple example to facilitate
base pairs can be assigned to a set of concentric cylindric&Pmparison.

surfaces, and thus cylindrical coordinates provide the most Before tackling the full helix, we begin by considering the
natural system in which teeparateLaplace’s and Poisson’s €lectrostatic potential for aingle point chargeq embedded
equations. The full power of the Green function techniqueln @ uniform dielectric mediung, and located at the point
can be brought to bear on the problem, which is made nonta,¢’,z"). From[4], or expressioriB26) in the Appendix of
trivial by the presence of a nonuniform dielectric. Moreover,[1], we have

in cylindrical coordinates one may easily identify and sepa-

rate out the featureless zero-mode contribution to the poten- 4q &, (=

tial. The zero mode, which goes asin(p), corresponds to ®(p.b2)=— meO 0 dklm(kp<)Km(kp=)

the cylindrically symmetric potential from a straight line of

charge and is what one sees far from the DNA surface. The xXcogk[z—2z'])cogsm[d—¢']), D

higher-mode terms in the potential therefore encode and re-
veal the specific helical conformation of the molecule. Thewherel, andK,, are the modified Bessel functions of inte-
structural information contained in these higher modes iger ordem, and the prime on the sum indicates that the zero
complete, transparent and calculaple?]. mode is to be divided by two. From this we can build up the
Though the above points have been adequately discussetectrostatic potential corresponding to a finite or an infinite
in [1,2], we wish to emphasize them in light of a recent claimdistribution of (identica) point charges distributed along a
that structural information ofdouble helix charge distribu- helix of constant radius and pitchP. We regard a single
tions is better represented employing helical rather than cyhelix of evenly spaced point charges as a two-dimensional
lindrical coordinateg3]. There it was argued that structure regular lattice wrapped around the cylinger a. Instead of
factors derived in a certain helical coordinate system reveadumming the charges along the helix, we decompose this
structural information in a more “transparent” fashion. The equivalent lattice into a finite collection of one-dimensional
vertical line charges that run parallel to thexis, and then
sum over this “bundle” of one-dimensional chains. Denote

*Electronic address: hochberg@laeff.esa.es the number of such chains by the inted\gy and the number
"Electronic address: edwardgl@ctrvax.vanderbilt.edu of charges along any such chdthis can be finite or infinite
*Electronic address; kephartt@ctrvax.vanderbilt.edu by 2N+ 1. The total number of charges living on the helix is
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therefore equal tdNy,(2N+1). We now make this concep- The final form in which we have written E¢4) results from
tual decomposition quantitative: the position in cylindrical working out the double sum in E¢3) and using one or more
coordinates of thenth charge on thesth vertical line with  elementary series and/or trigonometric identities, as well as
fixed angular coordinates is as follows: @, ¢s,z, s), where  the Poisson summation formula, as for example, in(&g)
of [1].
[ 2m By inspection of Eq.(4), it is clear that structural infor-
bs= N_o mation (as defined by the appearance of these so-called
structure factorsof helical charge distributions is revealed in
for 0<ssN,—1 and—N=n=N, whereAz is the vertical the cylindrical coordinate system. The structure factors de-
rise per residue, antll,=P/Az is the number of equally pend explicitly on the pitchtP and the rise per chargaz
spaced residues per pitch length of the héfige Fig. 1 of  which jointly parametrize the geometry of the helix.
Ref. [1]). The single helix potential is obtained simply by  Note that ourG,(k) has the same mathematical form as
replacing the functionH,(M) calculated in[3]. The reason for this
coincidence is clear: both structure factors result from per-
2'—2z,s and ¢’ —¢s forming the charge surfwhether finite or notover (half) the
coordinate linescorresponding to each coordinate system.
That is, we obtainG; from summing charges along the co-
N Ny—1 ordinate line#= const(a line parallel to the axis), whereas
Dreix(p. 4.2)= > > D(p.d.zlads.zes). (3 He results by summing along the coordinate lineconst,
n=-N s=0 that is, along a helix. The linear momentum in theirection
cjs k, while that in the helical directionis M. One has in fact
the formal correspondence between summing over vertical
lines and summing over helices,

27Az
P

s= S, Zns=nP+sAz (2

in Eq. (1), and summing over the point charges,

This leads to the following expression for the electrostati
potential from a single charged helix in a uniform back-
ground:

. kM, Pos. (8)
Drindp,.2) = E’J dkGy(K)

Held S e 0 Jo ! In the helical coordinate systerH,,(M) is the full struc-
ture factor for a single helix. In cylindrical coordinates,
X > {C*(m,k)cogkz+me) + S*(m,k) G,(k) gives the structure factor for a line charge, and is not

+ the complete “answer,” as it were. That is why we need the
additional factors C*(m,k) and S*(m,k), as can be
checked, by summing over thd, vertical chains. In the
lindrical system, the helical structure is encoded in terms
the factorized set of structure factdgs (k)C*(m,k) and

G,1(k)S™(m,k). The necessity ofC* and S* could have
k been anticipated on general grounds if one thinks of Fourier
(2N+1)7} analysis on a cylinder, namely, one expands an arbitrary
(for N finite) function of ¢ andz in terms of the complete set of functions
sin( k_P) of chiral “up” and *“down” moving ‘“waves’:
2 {sinkz=tm¢),coskztme¢)}. These coefficient functions
(C=*,S™) are simply the projections of helical structure along
the two helical directions, but expressed in cylinder coordi-
nates. This is why these basis functions appear in our
D e - We already made use of this fact during an interme-
and diate stage of our published calculati@ee, e.g., EqB8) in
[1]].
We may derive another form for the structure factor by
' performing the sum over charges in a distinct way. For ex-
(6) ample, if we now sum the point chargal®ngthe helix, then
an equally transparent factor results—even using cylindrical
coordinates. Only a single sum need now be carried out be-
: cause the helix sum means we are to make the replacements

Xsin(kzxme)Hm(kp<)Km(kp=).  (4)

The momentum-dependent structure factors appearing heF%
are defined as follows: 0

sin
Gl(k):

. . 2mm
C—(m,k)=G§(m,k)CO{(No—1)( kiT)AZ/Z

. ) 2mm
Sr(m,k)=Gz—(m,k)S|r{(No—l)( kiT)Az/Z

The remaining structure factor appearing in Ej.is defined ¢'—Pa=nA¢, z'—z,=nlAz 9

b
Y in Eqg. (1) and summing over the helix charges to replace Eq.

|1 (3) such thatm is in the range-M<n<M [not be be con-
sin 5 (kP= ZWm)} fused with the momentum variabM appearing in Eq(8)],
G, (mk)= . (7)  to obtain the corresponding single helix potential. The origin
sin (kP= Zwm)} charge corresponds to=0 and has coordinatesa0,0).
2N, Note that for a finite helix, the net charge must turn out to be
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the same no matter how we carry out the sum. This implies 1
that 2V +1=Ny(2N+1). By going through identical steps x=x|
as above, we find that the single helix potential is now rep-

resented as

(16)

x|
cylindrical helical

to be understood as an equality between one and the same

20 &, [ function expressed in two different coordinate systems. Ex-
Dpeix(p, $,2) = ;2 f dk>, {G5(m,k) tending the range in the variablkein the above Green func-
m=0Jo = tion (15) by replacingk— |k| in the arguments of the Bessel
x cogkz M)} m(kp ) Kn(kp=). functions, use
(10)

e 1 (= L,
fodkcoik(z—z’)]zzf_ dke k(z=7") (17

Here the structure factors turn out to be

. siM: (2M+1)(kAz+mA ¢)] to rewrite the above Green functigh5) (see alsd4]). Now
Gz (mk)= — (11 make (or defing the coordinate transformation ¢(z)
sin 5 (kKAz=mAg¢)] —(t,9):

- - s t
for finite M (and hence, finitdN), or 2= ssinB—tcoss, = 5C0$8+ asinﬁ, (18

[}

Gg(m,k)=277j;_x S(kAzxmA¢—2mj), (12 yhich is just the transformation from cylindrical to helical

coordinates defined if8]. Here 8 is the pitch angle of the
for M (or N) infinite. Again, the basic parametetsz,P ~ helix, and is related to the helix pitch By=27matanB. This
describing the helix geometry are manifest in the cylinderjuts
based structure factors. Moreover, the cylinder and helix- —im(d— ") amik(z=2') — o= IM(s—8") o IM" (t—t")
based structure factofs; andH,, are mathematically iden- € € =€ € '
tical in form. The formal replacement is

(19

provided we identify
Ms—kAz+mAg, (13 m . m
M= —cos8+ksin3, M’=—sinB—kcosB. (20
and allows us to obtain one from the other. a a
The extension to double helices is straightforward. One,, . . e . . .
merely adds in the potential for the dyadically re_Iatederh'S identification can itself be inverted to yield
charges and then sums over thid backbone charge’,

making up the group: m=a(M’sing+M cos3), k=—M'cogB+M sing.

(21)

Plioutie-neil £+ $:2) = Phep(p. b+ ;. 2+ 5)) In Eq. (21), m is an integer, whilek represents the linear
+(D£1elix(pv¢_ aj,z—3;), (14 momentum along 'Fhe direction. These are written in te_rms
of M’ and M, which represent the components of linear

wherea; and ; are the offset angles and distances, respecnomentum along the helicalands-directions, respectively.

tively [1,2]. Using Egs.(17), (19), and (21), we can now rewrite the
helical representation for [K—x’| calculated in[3], and
RELATION BETWEEN THE HELICAL AND transform it back in terms of cylindrical variables. That ex-
CYLINDRICAL GREEN FUNCTIONS pression was given as
From [4], the cylindrical Green function, that is, the po- 1 1 (= _ ,
tential for a unit ¢=1) point charge in vacuumeE& 1), is P ;f dMdM’ e M(=s)
given by ’°°
1 22 xe M1 (kp Ky (kp=), (22

£ deefimww')
0

X=X 7
xcogk(z—2")]Im(kp<)Kn(kp=). (19

A similar representation for the left hand side of Etp) was fx dmé(m—aM’sind—aM cos8) =1, (23
given in[3], which involves the same set of basis functions —o

(essentially products of exponentials and modified Bessel

functions. Thus a coordinate transformation should sufficeand perform the integration ovéd’. This gives a constant
to relate these two Green functions. Since we are talkingactor (@sing)~%; this step is followed by replacing the inte-
about thesamefunction, and provided both coordinate rep- gration overm by a discrete sumf(dm/a)—Z,, in accord
resentations are correctly worked out, then it must be thavith the fact thaim/a is the component of linear momentum
case that in the ¢ direction of the cylinder. Next the identity

wherex=a(M’sing+M cos8) andk is as above in Eq21).
The first step is to insert the identity
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o aM—mcosB over\(=m) in [3] overlooked this factor of (sj) * which
fmdkﬁ( k= asing ) =1 (24) results, as we see, from correct use of iden(@§). Once this
is done, the two sets of electric field components as calcu-
allows one to carry out the integration owdr. This produces lated in terms of cylindrical and helical coordinates do agree.
a factor of sigB which cancels the (sj8) * from the previous Some concluding remarks are in order. First of all, and
step. Carrying out these steps together with the relations imost importantly as demonstrated above, not only are cylin-
Egs. (19) and (20) demonstrates the equivalen¢e6) be- drical coordinates adequate for calculating potentials and
tween the two representations calculated for the Green fundields due to helical charge distributions, they also lead to
tion. simple structure factors admitting a straightforward physical
interpretation.
ELECTRIC FIELD ON THE CENTRAL AXIS In regards to the helical coordinate system advocated in
[3], it is a fact that Laplace’s equation does not separate in
Another point of direct comparison with the results[8f  helical coordinates. Indeed, it has been known for some time
is obtained by considering the calculation of the electric fieldthat there are exactly 11 coordinate systems in which the
on the central axis of the helix. It is not necessary to employthree-dimensional Laplacian is separalfig the helical sys-
complicated Green functions in order to calculate the comtem is not one of them. Nevertheless, the helical Laplacian in
ponents of the electric field on the central axis inraform  [3] was separated assumingapriori, but not general, form
medium. The potential for a single point charge located afor the t- ands-dependent factors of the product ansatz. For

x'=(a,¢’,2') in a uniform dielectric medium is just this reason, it is important to establish the validity of the
qg 1 Green function so constructed, and the coordinate transfor-
(D(X):EW mation between cylindrical and helical systems leads, as
shown above, to independent confirmation of the correctness

q 1 of the helical Green function. At this stage, insofar as one

T e (p?+at—2apcodb—¢')+(z—2 )T restricts attention to charged helices in uniform dielectric

media, which coordinate system one prefers to employ is
(29 simply a matter of taste. However, for the more realistic case
jof a nonuniform dielectric or solvent, the cylindrical coordi-

A textbook calculation yields the electric field on the centra A
y nate system offers an advantage2]. In this situation the

axis: ; . ’ ) L
question of the matching of solutions at the dielectric inter-
acos( b— ZWSAZ) faces arises. Charges within a dielectric induce a surface
E (0 B » P charge at the interface between that dielectric and a region
p(0:4,2)=— En,s (@%+ (z—nP—sAz)?%)3 with a different dielectric coq;tant. Since helical coordinatgs
are nonorthogonal and curvilinear, we expect that matching
_ 2msAz ; , . , .

asin ¢— solutions of Laplace’s or Poisson’s equations across the

P boundary will lead to a nontrivial albeit solvable problem in

E4(0.4.2)= ;;5 (%4 (z—nP—sAz)%)3? (20 gifferential geometry. We in fact had already considered, but
' rejected, using helical coordinates, in 1993 for some of the
E,(0.6,2)= SE (z-nP-sAz) _ above reasons. Finally, even though helical coordinates are
AT et (@%+ (z—nP—sAz)?)%? not separable, we can always take the potential and electric
field computed in cylindrical coordinates, and then simply
Since these formulas involve the features of the structure akansform them to helical coordinates to find their correct
the DNA (clearly through the two parametefsz and P), forms in these latter coordinates.
their dependence on the lengths and nature of the DNA
strands are also obtained here explicitly.

The much lengthier calculations for the electric field com-
ponents on thédouble-helix central axis in 3] lead to the We thank A. K. Rajagopal for a careful reading of the
same results only after that calculation is corrected for ananuscript and for making useful comments which helped to
spurious factor of si@ [5]. Indeed, the step invoking the clarify the connection between the helical and cylindrical
replacement of integration ovévl’ in Eq. (22) by a sum  Green functions.
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